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1 INTRODUCTION 
Consider a system  with n components 

1,..., nE E  (e.g., parallel, serial, etc...). The per-
formance of each component is described by 

ix  iL  for i = 1,...,n with iL  being a complete lat-
tice. Moreover, let  nxx ,...,1x . These are the 
basics for a rather general mathematical model of 
multistate systems where performance often means 
"working ability".  

In applications, the iL  are usually finite sets 
(e.g. nonnegative integers) or real numbers from 
[0,1]. The system's performance is computed via 
the structure function (x) (see. Def. 2.1). Con-
cerning the elements performance, it is assumed 
that ( )ip x , i.e. the probability (density) for ix  tak-
ing values from Li is known. (Thus the perform-
ance of Ei can be interpreted as a random variable 
on the states of Ei with range Li.) This, however, 
may be unrealistic, because the available informa-
tion for Ei often concerns regions of performances 
rather than single values.  

Take for example Li = [0,1]. Then the per-
formance of Ei might be characterised by the 
statement "the probability of high performance is 
medium", "mean performance is likely", "low per-
formance is not very probable". These linguistic 
statements are vague and one could try to grasp 
notions like "high", "medium", etc. by fuzzy sets 
on Li (for the performance) and on [0,1] (for the 
probabilities). For the sake of lucidity we will, 
however, assume the performance regions to be 
crisp subsets of Li and the probabilities to be crisp 
numbers. Thus we are led to classical the Demp-
ster-Shafer Theory (DST).  

Another problem concerns the correlation of 
the elements with respect to their performance. The 
assumption often made is that the elements behave 
independently, what is not always the case. Here, 
estimations for dependent elements are necessary. 

 
2 MATHEMATICAL PREREQUISITES 
Suppose to be given a system  with the 

above properties. Then the Cartesian product 
nLLP  ...1  is a complete lattice as well, and 

we obviously have xP. Further, let L be another 
complete lattice. We suppose all lattices to be 
bounded, i.e. for any of them there exist largest and 
smallest elements which we uniformly denote by 0 
and 1. For the different partial orders within the 
lattices we always use "". The following defini-
tions are well-known [3]. 

Definition 2.1. Let LP:  be an isotonic 
(non-decreasing) function (with respect to the par-
tial order in P) with (0,..., 0) 0  , (1,...,1) 1.   We 
call  the structure function of . 

Now we shortly present the basics of the 
Dempster-Shafer Theory [4]. 

Definition 2.2. Let  be a sample space, P be 
a probability measure defined on a suitable -
algebra over  (e.g. the set of all subsets of ). 
Further, let be given a system of sets  (-algebra) 
and a set-valued function (random set) :X . 
Then we define for any set A the function :Xm  
 [0,1]  

by  
 ( ) : ( )Xm A P X A               (1) 

where problems of measurability are left out-
side for simplicity. The lower index "X" will be 
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omitted if misinterpretation is impossible. The sys-
tem  NAA ,...,1  with iA  is called focal (w. r. to 
X) if all Ai are nonempty, the mass assignments 

)( iAm  are positive for all i and the normalisation 

condition 1)( 
i

iAm  is fulfilled. Hence, the 

random set X can be given by 
    )(;,...,)(; 11 NN AmAAmA . Now we define the 

functions bel, pl (belief, plausibility) :   [0,1] by 
 ( )

i

i
A A

bel A m A


 ,   

 ( )
i

i
A A

pl A m A
 

  .                  (2) 

Obviously, bel(A)  pl(A). We emphasise that 
the elements of  may intersect. This is typical for 
situations with incomplete information. Presenta-
tions (1) and (2) are generalisations of the classical 
random variable which is recovered for atomic Ai 
(i.e., they are pairwise disjoint and AAi  im-
plies AAi  ). 

Next we need the following generalisation of 
DST to functions of random variables. 

Definition 2.3. Suppose to be given M ran-
dom sets iX  with ranges ( )irg X i characterised 
by focal elements  i

ki
A  and corresponding mass 

assignments  i
ki

m ; i = 1,...,M. Here,  i
k

i
k ii

Amm  . 

Further, let be given a function f : 


)(
1 i

M

i
XrgX , 

where  is a suitable -algebra and X means the 
Cartesian product. Then we get the induced ran-
dom set  MXXfY ,...,1  with focal elements 

 M
kkkk MM

AAfB ,...,1
... 11

  and given mass assign-
ments 

   M
kMkkkkk MMM

AXAXPBmm  ,...,1
1...... 111

.  
Notice that the entity  

Mkkm ...1
 is not necessar-

ily normalised, because some of the 
MkkB ...1

may 
happen to be empty thus being excluded from fur-
ther consideration. Hence, a normalisation should 
be performed in those cases and we may assume 
the above entity to be normal.  

Now, for any B we get in analogy to (2) 

             
1

1
,...,1

,...,
,...,

( )
M

M
k kM

k k
k k

B B

bel B m


  , 

1

1
,...,1

,...,
,...,

( )
M

M
k kM

k k
k k

B B

pl B m
 

  .          (3) 

The assumption that the 
Mkkm ...1

 are known is 
rather restricting and may be unrealistic (as in sta-
tistics). If the random sets iX  are independent then 
one can set M

kkkk MM
mmm  ...1

... 11
.  

The case that information on iX  originates 
from several experts leads to Dempster's rule of 
combination and is considered, e.g. in [5]. 

In the case that the correlation between 
X1,...,XM is unknown one can derive estimations as 
solutions of the following optimisation tasks (omit-
ting non-negativity conditions) 

1 ,...,1
1

,...,1

,..., { }
,...,

min
M k kM

M
k kM

k k m
k k

B B

m


  

1 ,...,1
1

,...,1

,..., { }
,...,

max
M k kM

M
k kM

k k m
k k

B B

m
 

          (4) 

1
1

,...,
,...,

' ; 1,...,
M i

M

i
k k k

k k
m m i M   

(here, prime means that the ith summand is 
omitted). 

Denoting the extremal values of (4) by 
)(Bbel  and )(Bpl  one gets the obvious inclusion 

)()()()( BplBplBbelBbel  .        (5) 
Remark 2.1. Solving (3) and (4) becomes 

rather time-consuming for higher dimensions. To 
keep ef-forts minimal, one should take sets B 
which are of special interest for the random set Y. 
In practise, often i and  are set systems on the 
real axis. This may lead to interval computation for 
(3) and (4). For B one can take the set (z) = {x : 
x  z} thus obtaining the plausibility and belief 
distribution functions  

F , F  from 
)(zF  pl((z)),  )(zF bel((z)).         (6) 

Example 2.1. Consider two independent ran-
dom sets 

      1 [0,0.4];0.2 , [0.3,0.8];0.67 , [0.7,1];0.13X   and 
    2 [0,0.6];0.67 , [0.8,1];0.33X   characterising 

the working ability of the two elements in a serial 
system. Hence, we take function f as min (acting 
on intervals by bounds). After simple computations 
we get 

      [0,0.4];0.2 , [0,0.6];0.54 , [0.3,0.8];0.22 ,Y  [0.7,1];0.04 .  
Assume we want to know bel and pl for an 

"acceptable" work ability of the system character-
ised by the interval B = [0.65,1]. From (3) we get 
bel(B) = 0.04, pl(B) =  0.22+0.04 = 0.26, what is 
not very high, because both systems mainly work 
at medium level.  

Therefore, the question for "medium" working 
ability given by B = [0.3,0.6] will be answered by 
bel(B) = 0.54+0.22 = 0.76, pl(B) = 0.2+0.54+0.22 
=0.96. 

 
3 APPLICATION TO SYSTEM 

RELIABILITY 
In principle, the above apparatus easily ap-

plies to reliability determination of multistage sys-
tems. The in-formation on the elements perform-
ance is given by the random sets iX  with focal 
elements i

ki
A 

iL  (the latter being a suitable ex-
tension of iL ).  

The role of the function f is now played by the 
structure function  that maps (in analogy to f) 
into L, the latter being the corresponding extension 
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of L. Often, the system is a connection of parallel-
serial subsystems what may ease the computation 
of  (e.g. by paths or cuts). A popular choice for 

iL  and L is the unit interval [0,1]. Usually, one 
aims at computing the probability for a certain 
minimal level  of the system's performance, it is 
(x)  . This leads to  n

kkkk MM
AAB ,...,1

... 11
  

whereby the focal elements of Xi may be taken as 
intervals in the continuous case, i.e.  i

k
i
k

i
k iii

aaA , . 
For B we take [,1]. Due to the isotonicity of  we 
get for (3) 

         

 
1

1
1
1

,...,
,...,
,...,

( )
M

n
n

k kn

k k
k k

a a

bel m

 

   ,      

 
1

1
1
1

,...,
,...,
,...,

( )
M

n
n

k kn

k k
k k

a a

pl m

 

         (7) 

where we used bel(), pl() for bel(B), pl(B). 
Though (7) is computationally easier to han-

dle than the general task (3), it may be of advan-
tage to de-compose the system  into smaller parts 
what is typical for parallel-serial systems. The 
most elementary subsystems are those consisting 
of two elements. As a result we obtain random sets 
describing the behaviour of the subsystems and 
which can be combined to get the final estimation 
with respect to (7) or (4). 

 
4 CONCLUSION 
In the present paper we considered possibili-

ties to compute reliabilities of multistate systems in 
the presence of random set estimations for the ele-
ments' working ability (performance). It turned out 
that the Dempster-Shafer approach is a suitable 
mathematical tool. For the case that the interde-
pendence of the elements is unknown, bounds for 
the system's performance belief and plausibility 
functions are given as well. 

From a practical point of view it may be 
useful to consider fuzzy focal elements and/or 
fuzzy sets B witch will be a topic for future 
research. We also refer to [1,2,6] where  
generalized implication operators are used to 
characterize the degree of inclusion of fuzzy 
sets. 
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